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1. Introduction

We study in this paper the propagation of an electromagnetic

wave into an unbounded domain occupied by a nonlinear dielectric

substance. In some Cartesian coordinate system (x.) on the domain

3
2 R we assume that the domain consists of the half-space

xI > 0; the propagating electromagnetic wave is assumed to be of

the form

(1i.) E (0,E2 (xlt),0), ,U (0,0,H 3 (xlt))

and the properties of the nonlinear dielectric substance occupying

2 are delineated by the nonlinear constitutive relations

(1.2) D B

which determine, respectively, the electric displacement and magnetic

field in 2 in terms of the electric field and magnetic intensity.

The constitutive relations (1.2) are commonly considered in work on

nonlinear optics [1], [2] with 6 > 0, p. > 0 being scalar-valued

functions of their respective fields. As e E + Z( ) where

is the macroscopic polarization vector and 60 is the per-

mittivity of free space, and Z(g) = X(Z), where X(Z,) is the

susceptibility, P = (co+X(.)) . For an isctropic material,

X = X(IIjIt), . = p.((p11) and, in most treatments in nonlinear optics

texts these functions are exeinded in series of the form

fx X 0 + X I + O(E 2), E = 11T

(1.3)
0 +  1IH + O( HN )  H = II II1
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where t0 is the permeability of free space, X0  is the linear

susceptibility, X1  the first nonlinear susceptibility, and so forth.

Experimentally X << X so that the presence of the term of first
1 0

order in E in the expression for X is of most interest when E

is large (e.g. in a laser beam) while for most purposes one may

assume that p = p." Many of our results apply to materials in which.

[L(A) and &(Z) = e0 + X(V) are more general than the forms implied

by (1.3).

In addition to the forms (1.1), (1.2), respectively, for the

electromagnetic wave propagating in 2, and the constitutive relations

which delineate the dielectric material that occupies 2, we need

Maxwell's equations which we take in the form

--:-V x ,div :0
[(1.4) )at

aD
V x, div = 0

at

We also introduce the notation

:Q R

and assume that

h(i) V() () E C )

h(ii) e() 0, ,() 0, V, E R

h(iii) ( ( )' > 0, ( (C))' > 0, VY E R1 or, at least, for aIll

with J) sufficien ly small
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From (1.2) and the assumed form of the wave (1.1) we obtain

D (0,D (xl,t),O), B = (O,O,B (X1,t))

with

(1.5)

BC x ,'t) = 4(H3(xlt))H3(xl't)

By hypotheses h(III) these relations may be inverted so as to yield

E 2(x1,t) = D 2(xl,t) MCD 2Cxlt) )D 2(x1,t)

where V,- E R we have defined

-1 1 O

with (for p, E R I

SP I L4 E(p) E(&(4) -) MpE

p ~ p Ht(p) H(40C,) ') pp

Therefore Vp ER, (or, V~ wih 01 i mFi - nci y~ i1

(1.7) (1(,)(4)' = dE(j1 )1

dp- dP dpfd4
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by h(iii) and, similarly, (PT(P))' > 0, Vp E RI. Note that in the

special case where . = p0, y = i/.0 > 0. In the next section we

demonstrate that shock waves may be expected to form in the electro-

magnetic wave (1.1) as it propagates into the half-space x1 > 0;

We also derive some estimates for the maximal time of existence of a

C1 wave and estimate the distance travelled by the wave into the

half-space until the development of the shock; these latter results

are presented in §3.

There is considerable literature, ref. [10]-[17], on shock develop-

ment in electromagnetic theory with the papers that are closest to the

present work, in spirit, being those of Broer [10], [11], Katayev [16],

and Jeffrey [11], [12]. The work of Broer, however, is not applicable

to those important situations in which the quasilinear evolution equa-

tions are not genuinely nonlinear while our work differs from that of

Jeffrey by virtue of the fact that by working with the constitutive

relations (1.2) and employing D and B as our basic variables,

instead of E and B, as in [12], or E and H, as in [111, we are

able to write our evolution system in conservation form; the importance

of working with D instead of E was emphasized in [6] and is based

on the fact that E is, in general, not divergence free in a nonlinear

dielectric while D is if there is zero free charge. Some of the con-

sequences of having the equations for D, B in conservation form,

i.e. , the implications of the Rankine-Hugoniot and Lax k-shock conditions

are dcveloped in the next ,;ection. The application of L,ax's eolofyginl

work [3], also simplifies the asymptotic estimate for t in §2
InIJIX

makes possible a rather simple and explicit computation in §3 !,,
Tit, X

the distance travelled by the wave into the half-space before shock

deve]opment occurs.
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2. Shock Development and Propagation

To simplify the notation in this section we set x = xI ,

D = D2 = E 2 , H = H3 , B = B . In view of the forms of the

electromagnetic field vectors in the wave entering the half space

X 0 Maxwell's equations (1.4) reduce to the pair of equations

(2.1) aD aE - aH aB aH aE
aE at ax aH at ax

or

(e,(E)E)'E + H x  0

(2.2)

(p(H)H)' t + Ex 0

Setting, a(<) > 0, b() 1 >0, VE RE

we see that E(x,t), H(x,t) satisfy the first-order quasilinear

system

F t + a(E)H = 0

(2.3) )

Ht + b(H)E = 0

which is, unfortunately, not in the usual conservation form. We

thus rewrite the system in the form

Et it
+ 11x b(l) x

and note that in view of the definitions of a(-), b(*), and (].5)
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(2.4) D(x,t) (x~) 'E 1~~)H(x,t) d

Clerly Dt -xt a(E(x,t)) E t(x,t), B t xit) -b(H(x,T t~xt

and as a0> 0, b(F) > 0 the relations (2.4) are invertible with,

in fact, E(x,t) E(D(x,t)) and H~x,t) = HCB(x,t)). Therefore,

the system (2.3) is equivalent to the first-order quasilinear system

(2.) Dt + H'CBB = 0

SBt + E'(D)DX z

where HCB) =y(B)B, E(D) =X(D)D. If we rewrite (2.5) as

(2.6) D)' + (0i H'(B)) 1) =

then, clearly, the system for D, B is in the usual conservation

form

--u. + -L f. 0, i 1,2ati ax I

where u and = ()~.In the most common situation, that of

a nonmagnetic material, [i(H) = 1 so that H'(B) I/it 0 and (2.6)

reduces to

With (2.7) we associate initial data of the form
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(2.8) D(x,0) = D aX), B(x,0) = B0 x)

and real characteristics in the x,t plane

(2.9) dx + E'(D(x,t))

Note that for E R . E'(0) = X())' > 0 by (1.7). The positivity

of E'(4), V4 R1  is equivalent to the strict hyperbolicity of the

system (2.7); via standard a priori estimates (Lax [3], Nishida [4]) on

theRiemann Invariants associated with the system (2.7) (these being

defined below) it can be shown that if supID 0 (x)l and suplB 0 (x)
R 1  R 1

are sufficiently small, and '(0) > 0, then for as long as a

sufficiently smooth solution (D(x,t), B(x,t)) of (2.7), (2.8) exists,

on 0 f t < tm for instance, we will have E'(D(x,t)) > 0,

x E R , 0 - t < t ma x . For sufficiently small initial data, therefore,

the (real) characteristics (2.9) are well defined on the maximal

interval of existence of C solution even if only local hyperboli-

city of (2.7) obtains, i.e., even if we only have E'(0) > 0.

We now define the Riemann Invariants associated with (2.7) to be

Fr(D,B) =B + A"1T Tde

(2.10) 1 V
1

0Is(D,B) B - 1. VTFTd
SIL(J 0

By standard results r and s are constant along their respective

characteristics, i.e.,
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7 A0 
r IE' (D(x,-t))Y ar 0r'(x,t) = - /'U (D--) =

at 7 L0  ax

(2.11)

s'(%,t) as + E'(D(x,t)) as 0
ut V 110  ax

and we have the following blow-up results which are consequences,

respectively, of the work of Lax [3] and Klainerman and Majda L5 3.

(A) If D0 (X) is periodic on R B 0(x) = 0, and E"(0) 0 0

(so that the problem exhibits genuine nonlinearity) then finite-time

blow-up must occur for

r x(x,t) B x(x,t) + 0 VE'(D(x,t)) Dx (x,t)

- L0 D t(X,t) + V- "'CD-xt)) D x(X't)

-I V(xt)D S (Dt,D x ) must blow-up in finite time and a shock develops.

Futhermore, it is a consequence of the work in [3] that

__ 0 VE'(O)
(2.12) t maxID--I "TTO)IT

a result we will apply in §3 to a specific class of nonlinear dielec-

tric materials.

, R1

(Bf~ ) .;u[,)o ,., I.h l Io( x ) B x) both have co,,pdct suipport in R

then so will
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s(x,0) b (x) W'(+) d(

s~x, = B Wx - E d r,

From the recent work of Klainerman and Kajda [5] it then follows that

if r(-,0), s(-,0) are also of class C then any C solution of

the initial-value problem for the diagonalized system (2.11) must

develop singularities in finite time in the first derivatives

rxP sx  if E'() is not constant on any open interval. ]'or example,
22

if with X0 > 0, X() = X0 + X 2K then X() 0 + . Clearly

'(0) 0 > 0 (local hyperbolicity) and E"(0) = 0 (loss of genuine

nonlinearity) but E"(K) = 6X 2 0, if 4 0, so that the result

of [5] applies for C1 , compactly supported initial data.

Remarks. If (D,B) is a sufficiently smooth solution of (2.7),

say class C 2 , then clearly we may eliminate so as to obtain the

scalar nonlinear wave equation for D(x,t):

2 2
(2.13) - D(xt) 1/ 0  2 (D(xt)).t 2  0 x 2 EDxt)

This equation was derived by this author, in (6] by specializing the

three dimensional evolution equations

02.
1').T(2.11 I V2(M(WDi)-gradi(gradX(M-D),

0  at 2  - ,

obtained under the assumption that , L = 0Q' , X(P,)] in 2 , to
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the oac f an telectromagnetic wave ot the form (i. 1) prcp'jaPgdti . 1-firough

alt '(r(Iiliier ielectric cylinder, with the dir, ctiori of jrpgto

(lt ctI ~u~the axis (_f the cylinder. Several lacts may bero()t':

about the simple wave equation (2.13)

1) Suppose we set D(x,t) =G x(x,t) in (2.13). Then provided that

G(x,t) is sufficiently smooth we obtain

G ttX l/p.0E(Gx) -

G tt 1/1 i 0 ECG ) X+ K(t)

whezre K(t) is an arbitrary function of t. Thus the usual scalar,

nonlinear wave equation which arises in one-dimensional motions of a

nonlinear elastic body is not equivalent to (2.13).

2) Suppose that D(x,t) is a solution of class C 2of an initial-

value problem on R associated with (2.13) and is such that for

0 zt <t max

t
(2.15) f E(D(-oo,t)) dt < where

E(D(-a-,t)) lrn[m E(D(X,t))]

If we set

(2.1.6) A(x,t) D .f D(y,t)dy - f EC(N-~t:)) x(I t + c

where C is an arbitrary constant, then



1]

b x(X,t) -, i t(x,t), aind by (0.13)

1x 2
Bt (x t) -p. 0  6 2 D(yt) dy - E(D(--,t))

_ fx J2 E(D(y,t))dy - (r)( -- ,t))×

-- ay

- - E(D(x,t))

so that the pair (D(x,t), B(x,t)) is a solution of the system (2.7).

This equivalence between the system (2.7) and the scalar nonli'ar'

wave equation (2.13) only holds if B is well-defined, i.e., if

(2.15) obtains. As

E(D(-,t)) lim [E'(D(x,t))D (x,t)],
E(D(--'t)) x

if (2.13) is strictly hyperbolic, i.e., E'( ) > 0, V, E R , then

clearly (2.15) will obtain if lim IDx(x,t)I = 0, 0 - t < t

We now return to the system (2.7); shock development and propagation

in the more general system (2.5), which is strictly hyperbolic
]

provided ('()H'(K) > 0, V< E R , will be dealt with in a forth-

coming paper [7]. If we let s denote the speed of the shock which

develops either in case (A) or case (B) above, and [F] the jump in quan-

tity F across the shock then the Rankine-Hugoniot conditions require

that s[uk] Fk 1 , k 1,2 where

U (D and ~ 1/110 B

\XD) P
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We therefore obtain the conditions

s[D] 1 [B] [H]
IL0

(2.17)

s[B] [X(D)D] [E]

from which follow the simple relations

i) [D][E] [H][B] =1 [B] 2

'0

2i ) [D] - [B] = -- [E]

The shock speed is, therefore, given by

s~ =,-- [E] i F[DD]
(2.18) S 1 i x D

- [D] °  [DI

so that two shocks are possible, one moving to the left and one

moving to the right. We now apply Lax's [8], [9] k-shock conditions

to the system u. + -- f. 0, i 1,2; i.e., we require thatat ax I

for either k = 1 or k = 2

(2.19) XK(" - ) 5 > Xk (u+)r( t )/% I an
where : , ( X(D)D), and the X k 1,2 are the

distinct real eigenvalues of the matrix V-. However, by (2.9)u

(2.20) X] V---D) X 2 1V 2 V V0

In (2.19),u ' (- U+ ( denote, respectively, the
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values of u behind and in front of the shock. The conditions

(2.19) represent one formulation of a classical entropy condition

for solutions of hyperbolic conservation laws containing a shock.

Using (2.20), (2.19) becomes

VE 1(1 ) > TL0S > V-E'TFYT
: I(2.21) or

VE'(D > s > - V orv

However, by the definition of E, E m E(D) E(D(E)), where

D(E) = P(E)E so that (2.21) is equivalent co

1 1
/ '(E) VO +)

(2.22) or

1 1

VV'(E V

For the shock moving to the right, sr V ([D(E]

so that only the first inequality in (2.22) makes sense, and we

must have

(2.23a) ' E_) < < VD(E+)

For the shock moving to the left s V T / [E]
o t0 [1(E1

so that only the second inequality in (2.22) makes sense, and wc

obtain

(2.23b) W/ '(F > V /[(E)• - ~ ~ [E] l'(+
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lhu. Lh; k--Jjrk' ¢2ofditior:s. 01 Lcx predict that (2.23a) must hold

for the shock moving to the right while (2.23b) must hold for the

shock moving to the left. We now examine the implications of (2.23a,b)

for the simple but physically important case where

2(2.24) 6(E) e 0 + E 2 0 > 0, 2 > 0

We recall that by the definitions of E, D, V R ,  E(D(K))?3

where D(4) = ()4 604 + &24 3  Thus 0(4) 0 if and only if

= 0. A direct computation yields

(2.25) E"(D(e,)) E' (())0t(4)

D4 2(t
0' ( )

where E'(P(4)) dE.

If E'(D()) > 0 (at least for fIj sufficiently small) then

(2.26) E"(( )) = -E'(()). 2 2

so that E"(V(O)) = E"(0) = 0 but E"(D(t)) 0 for all t 0.

Thus for Cl initial data with compact support the results of

Klainerman and Majda (5], as previously stated, apply and shocks

will develop in finite time. As D'(E) 60 + 36 2 E 
2  the condition

(2.32a) relative to the shock moving to the right with speed

1 / LE]Sr  10 cc 0 E+ 2 E 3 ]

rr

1 E + -E

/- (- 3 3V 0 C0(E+-E_)+ 2 (E+ -_)



- " 2( 2 (£2 +(E +( + _)E ) -

(J 0 '2 + + - -

(2 .2)2+tE 2 < 2
(2.27) ./ £0+3 _ < V &0+62 (E++(E++E_)E_)

< V' F0+3, 2 E2

This last inequality clearly implies that

E' + E E > 2E2

(2.28a)

2 2
12 + EE_ < 2E2

from which we easily deduce that

(2.28b) 2E2 E 2 > E E > 2£2  - 2
-+- _ +

and

2 E2
(2.28c) E £ _ (across the shock moving to the right)

In a completely analogous fashion we obtain, for the shook movinf,

to the left

a 2 + +

while across this shock

2E_ > E+ + E+F_.

(2.29a)

~2; .. E_ + E+E
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from which we deduce that
2 2 2(2.29b) 2E2  E? > E E > 2E - E.

and

2 2
(2.29c) E_ > E+ (across the shock moving to the left.)

The situation corresponding to (2.28c) and (2.29c) is depicted below

where we have denoted the shock moving to the right with speed s
rrby x = Xr Ct) and the shock moving to the left with speed :

by x x (t)

Xz XrWt

Et

x

-.In the figure sketched above E+9 E denote, respectively, the values

of E(x,t) in front of and behind the respective shocks. For the

shocks x (t), x r(t) therefore, (2.28c) and (2.29c) predict that

.6&
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S(xt) wu t jicreas~c as w. cr'oss the respective shocks, moving in

the direction of increasing x. However, that part of the energy

residing in the electromagnetic wave which depends on j is given

by or= () • or

S D(E)E = ((e0+C2E )E)E

and thus we have the result that

(2.30) W(x,t) 60 E
2 (x,t) + e2 E

4 (x,t)

must increase as we move across the respective shocks in the direc-

tion of increasing x.

Remarks. For the equations (2.3), i.e.

Et + a(E)H 0

(2.3)

L Ht + b(H)E : 0

where a(E) > 0, b(H) > 0 it is a simple matter to show that there

exist solutions of the form E(x,t) E 0(x-Xt), H(x,t) = H(x-Xt)

where E0(x) = E(x,O), H0 (x) = H(x,O). In fact X = ±Va(E)b(H)

so that (implicit) travelling wave solutions of the form

E E (x ± Va(E)b(H) t)
0

(2.31)
H = (x ± Va(E)b(H') t)

(2)
may be well-defined, at least for small values of t. If the

material is such that I.(H) =[i then b(H) [ and (2.31)
2,olutioris of Ihe form 02.31), for tho system (2.:) hive, boon 0]i,;.I

by Katayev L6I.
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assumes the form

E-] V -(x aT 7 ¢ t )
(2.32)

H H - V-(-E t)

If we define

F(x,t,E) S E - E0 (x ±40 Va(- t)

then F(xo,O,O) = 0, for any value of x0  such that F 0(x) 0,

and

F (x t,E) 1 ± Et(x±4- 3a(E)-(a(E)) a'(E)
E ~0 0 0

a(F) = (E) + t'(E)E - a(O) = (O)

(2.33)

a'(F)= 2e'(E) + C(E)E - a'(O) 2e'(0).

~2
In the typical situation where e(E) = c0 + F, 0 > 0, £2 0,

a(O) = F0 and a'(0) 0 so that F E(x0,O,) = 1. If c(E)

= + E  then a(O) = ,' a'(O) = 2c, and FE(xo,O,0)

:1 ± £I10 E1(xo). By the implicit function theorem, t-herefore, it

x0  is such that E (x 0 0 and, either,

(G) = +

or

(ii) IF(E) e + C1E, and, e± '12 '(x) 0

a solution E E(x,t) of F(x,t,F) 0 will exist for Ix-X 01
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and It) sufficiently small.

Suppose, now, that we differentiate the first relation in (2.32)

through with respect to x and solve for E ; we easily obtain

(2.34) E E0(x+ - 2a--E)t)/ a'(E)t

where a(E), a'(E) are given by (2.33). If 3r-* > 0 such rtit

(2.35) V V E R 1, 1i sufficiently small

then for the wave moving to the left with velocity 4 0"'a(E)

(236) 1 1 -l al(E) t 1 1*t t 0
2 U' a()2 0

'-1
as t t* = 2/ 0  ,' and, thus, by (2.34)

(2.37) E (x,t) - + as t t*

It therefore follows directly from (2.34) that a shock can be expected

to develop provided the constitutive relation in the material is such

that (2.35) is satisfied. For the case in which (-) F. + X
01

E , (2.35) assumes the form V 0+ 2 eI_ < 26,1 /.* which is

certainly satisfied for I sufficiently small if c* is chIOsenI

sufficiently small; the prediction of shock development via (2.3i4)

is not suprising in this case since we are in the genuinely nonlie ,i

S i tuatin.
"" 22

However, if r,(r) = e0 + 6 ' then (2.35) is equivalent to

/r0+3 2 2 < 2
e2 -7W- r
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whi-h can not bS atistied iv, ki sufficiently small, no matter how

small e" > 0 is chosen; this is, of course, a situation in which

genuine nonlinearity fails and shock development can not be shown to

follow directly from (2.34). This is, essentially, the sort of

situation in which the utility of the result proven by Klainerman

and Majda [5] becomes apparent provided the initial-value problem,

formulated in terms of the fields A and , instead of E and

k, is such that the initial data are C and compactly supported.

Analogous results may be presented for the more general situation

described by the system (2.3), where we do not assume, a priori, that

P(?.) = 0' V E RI , but a discussion of such results will be

relegated to a forthcoming work [7]. It is noteworthy to remark that

solutions of the basic form (2.32), for an electromagnetic wave

propagating into a half-space filled by a nonlinear dielectric sub-

stance described by an arbitrary functional relationship between D

and E, were previously obtained by Broer [10], 1171 where t ho Jn .i]ysis

was taken as far as the determination of Ex which, it was shown,

could blow-up in finite-time thus leading to the initiation of non-

uniqueness in the solution.

Remarks. If we consider a material for which (i(H) = then (2.3)

reduces to

Et + a(E)H 0

If + 0 0
t 11o X

which is easily seen to imply that E(x ,t) sati tf e t" he no1i]i,ear'

wave equation
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'a1 a(E)E f n a(E)) 2
? 38) Ett - 0 d 

an interesting equation in its own right which will be considered

* in [7]
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2 - Some Computational Aspects of Shock Development

In this section we derive some estimates for tmax " the maximal

time until the development of a shock in an electromagnetic wave of

the form (1.1) which is propagating into a half-space filled wilh a

nonlinear dielectric substance. We also estimate the velocity of

the wave in the nonlinear dielectric and the distance travelled by

the wave into the half-space until the shock develops. We assume

that the dielectric conforms to the constitutive hypothesis

D 0 E + P(E), B 0 H

with P(E) X0E + XiE2, X0 > 0, X > 0. The quantities X0,

X1 have been defined in §I as being, respectively, the linear and

(first) nonlinear susceptibilities of the dielectric. Thus,

D = F(E)E, E(E) = e + c E with 60 = E + 0 : = i"
0 2 0 0 X0 *C
2

From D : ( +X 0)E + X IE we easily compute that
(&0+x0  + 1 /C 0 +X 

2 +i4XD(xt)

(3.1) E(x,t) A 2x 2 1

Choosing the positive sign on the radical and expanding in a power

3series we obtain E X(D)D + O(D3 ) where

X(D) X + X D
0 1

(3.2)
2xl -x I

0 - ( +XO) > 0, 'I  - (c0+( )3/20 0'0 0

3Our problem, up to terms of order D is then of the form (2.7) with
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X 2

E(D) 1 __- _ _ D2
(0 +X0) (O +X O)3/2

so that

2x
E'(D) 1 (1 0 +X0) (o+X 0)3/2 D > 0 for

(3.3) ( X0E X0 /

IDJ < (c0 +X0 1 /2X1

We assume that initial fields of the form (2.8) are prescribed with

B0 (x) =0 , D 0(x) periodic on R], and sufficiently small, so that

the standard a priori estimates, based on the Riemann invariants

associated with (2.7), imply that (3.3) is satisfied for, as long as
1

a C field D(x,t) exists. Actually

2

D0(x) (F0+X0)E0 (x) + X1Eo(x)

so that
I t

(3.4) D0 '(x) (c0 +X 0 )E0 (x)+2X 1E 0(x)E0 (x)

E0 (x)[(&0 +X0 )+2xlE 0 (x)]

2x1 E0(x)E0 (x)

In making the approximation in (3.4) we are assuming that the

initial field is that of a high intensity (laser) beam whose stre, ngth

is of the order of magnitude 10 9(volts/meter) while .0 the per-

jiiLttivity of' free spocc, is of the order 10- 3(Col imbs /N'wt on-Me I 2or.-,

X0  i f lhic o.dhr' 10 -I (Co I tlmbs /Newton-Meters2), and X i:s of

13 -, . 1o
the order 10 (Columbs/volts'). For example, X1 = 4 X10

J a10 ot
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.:x matched KDP [2]. The various units (MKS system) are related

by the identification Newtons/Columb = Volts/Meter, which are the

dimensions of the electric field E (that of D, the electric

induction field, as well as of P, the polarization, are then

Columbs/Meters 2). Thus, in (3.4), the quantity (+0) is c.' order

10 -1  while >1E0 is of order 10

Since E"(0) 2 -2 /(F0+X0)3/2 s 0 the problem (2.7), (?.8)

is genuinely nonlinear, and the results of §2 apply. Tn particular,

we find that

(3/5) tmax  max

(m 0 
-l+X0)

X 512 m 0

Also, if we denote by vb the velocity of the beam in the dielectric

then

-2
b a0E)

1

J - r0( ( E)E)'

1

4 0(( -0+X)+2X E)

-19q

However, O(iO+XO) is of the order of magnitude 10 (i. ,  the

permeability of free space is 4,1
-7 Newtons-Seconds 2

Columbs

while ItoX is of the order of magnitude 10 0. Therefore,
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v 1 (max E) -
2

v2 0XIE V 2 0Xl

Finally, the distance travelled by the beam into the dielectric

11.: -:tice until the shock develops is given approximately by

rmax b max #
_% 0( ) . . . /

I (max (C 0 +X 0 (maxIE E 'I) - '-(maxE) 5/2 0

1 1>' 71

or

(s1 7 S 0O 0 (max E) (max IEOE 0 F ',
max -3 0

It over the distance travelled by the beam into the ha]f-space, ultil

shock development, max Y. max E7 then we have tht, (admittedly rude
0

buc, nonetheless, informative) estimate , , -' )

-<(3.8) S m _ C max E ) (maxlE,/ I

max __ _ _ ( O nax U._ -

whc-re C 1> ._£_\ +X 0 ) ,is a characteristic material coff-iceret

which may be associated with a particular nonlinear dielectric

substance. For most common nonlinear dielectric substance, e...,

* index matched KDP., C' will be a very large number, somethin (, the
1
21

order of magnitude 10 Thus (0.8) indicates that even for an inLi-
9

dent high intensity beam of the order of magnitude ]0 volls/m'tey' ..

St ,.p gradient on I hc i nc iden 1 ,)4,tin wi I1 nI- 4 ,feU I( ( ; bIi it ii-.)d

development may ocour within distances obtainable unde aborotory .

.1(Iitions. 
IA~~~/1;X,, ~j LY / ',,.
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